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The theory of chemical reactivity has recently been de­
veloped so remarkably that organic chemists are able to use 
it with ease and considerable confidence. This is so mainly 
because of the simple concepts of the theory, such as 
H O M O - L U M O interaction in the frontier electron theory 
developed by Fukui et al.,2"5 and conservation of orbital 
symmetry in the Woodward-Hoffmann rule.6"8 

In this present article, along with the above-mentioned 
theories, we wish to present a novel approach for the predic­
tion of catalytic activity in terms of molecular orbitals 
through orbital mixing. 

The usefulness of the idea of orbital mixing has been 
demonstrated. For example, Zimmerman proposed the con­
cept of MO following to draw correlation diagrams and to 
follow reactions.9 Recently, Fujimoto and Hoffmann calcu­
lated the coefficients of orbital mixings of ethylene oxide 
and acrolein by perturbation of the electric field in connec­
tion with catalytic reaction.10 Moreover, Libit and Hoff­
m a n n " showed that orbital mixing due to overlap integrals 
plays an important role in the charge distribution of a x 
electron system with methyl substituent by using the per­
turbation method12 developed by Imamura, one of the pres­
ent authors. A trial13 to illustrate catalytic activity by or­
bital mixing between orbitals with the same symmetry was 
also made in a manner similar to the Woodward-Hoffmann 
method.6"8 

Our fundamental idea in the present article is as follows. 
The change in a chemical reactivity by a catalyst is brought 
about by the change in a frontier orbital concerned, and the 
change in the frontier orbital should be the result of orbital 
mixings between the frontier orbital and the other orbitals 
of the substrate by perturbation due to a catalyst. This per­
turbation can be classified into two parts, one an electro­
static interaction and the other an overlap of orbitals be-
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tween the substrate and the catalyst. The former may be 
called "static orbital mixing" and the latter "dynamic orbit­
al mixing" (see Figure 1). We derive here general rules to 
predict the static and dynamic orbital mixings. For exam­
ples of application, we have chosen the Lewis acid-cata­
lyzed Diels-Alder reaction and the Meerwein-Ponndorf 
reaction. 

Nowadays, molecular orbital concepts have become 
working tools for most organic chemists. Our qualitative 
approach may be of practical value not only for the under­
standing of the essential feature of a catalysis but also for 
the prediction or design of a catalytic organic reaction. 

Formulas for Static Orbital Mixing 

Consider a point charge (Ze) interacting with the molec­
ular orbitals of a substrate. The electric field by the point 
charge can be regarded as a perturbation to the substrate. 
That is, the perturbed Hamiltonian H' is represented by eq 
1 

H' = -Zei/r,k (1) 

where rtk is the distance between a point charge at t and an 
electron k. The usual perturbation theory12 '14"17 gives the 
following equation for the coefficient of orbital mixing dy 

« ( * ) - « « > ( * ) + L d,m°(k) + ... (2) 

dn = JV,°(A0#V,°(*) dTk/(*i° - tf) = 

S<pP{k){-Ze*lr,k)tf[k) dr*/(€,° - «/) (3) 

where e,-° and tf are the orbital energies of the /th and y'th 
levels, respectively. The molecular orbital, <#°(k), may gen­
erally be represented by the linear combination of atomic 

A Novel Approach to the Theory of Catalytic Activity 
in Terms of Molecular Orbital Mixing 

Akira Imamura*18 and Tsuneo HiranoIb 

Contribution from the Biophysics Division, National Cancer Center Research Institute, 
Chuo-ku, Tokyo, Japan, and the Department of Synthetic Chemistry, Faculty of Engineering, 
University of Tokyo, Bunkyo-ku, Tokyo, Japan. Received October 31, 1974 

Abstract: A novel approach is proposed for the estimation of catalytic activity from the change of a frontier orbital, given in 
terms of general rules which predict the change of a frontier orbital by perturbation of a point charge ("static orbital mix­
ing"), or by overlapping of orbitals ("dynamic orbital mixing") through orbital mixing. These general rules can predict, 
without calculation, the change of frontier orbitals of a perturbed system from the nonperturbed molecular orbitals. The gen­
eral rules derived for "static orbital mixing" and for "dynamic orbital mixing" are applied to the Lewis acid-catalyzed Diels-
Alder reaction and the Meerwein-Ponndorf reaction, respectively. In both cases, the changes in frontier orbitals and in 
chemical reactivities under the influence of catalysts could be correctly predicted from the general rules, indicating that this 
approach should be very useful for the prediction of catalytic reactions. Finally, the meaning of multicenter interactions in 
catalytic reactions is discussed in connection with enzymatic reactions. 

Journal of the American Chemical Society / 97:15 / July 23, 1975 



4193 

orbitals; that is 

Vl0W - E Qr0XrW (4) 
r 

Substitution of eq 4 into eq 3, followed by CNDO (com­
plete neglect of differential overlap) approximation,18 20 

leads to 

d,j = E E Qr0Cj,0 f' Xr{k)(-Ze2/r,k)Xs(k) dr*/(f;° - (J°) = 
r s J 

-Z^Qr0Q0Ht)KeP -«/>) (5) 
r 

where (rr\t) represents the electrostatic interaction energy 
between the atomic orbital r and a unit point charge at po­
sition t. 

H O = Sxr(k){e2/r,k)Xr(k) drk (6) 

The summation in eq 5 can be rewritten as follows 

E (Qr0QP)H') = E (Q°Qr°)\{rr\t) - (rmrm\t)\ + 
r r 

(rmrm\t)Z (Q0Q0) (7) 
r 

where (rmrm\t) is an appropriate integral to cancel all ex­
cept the few leading terms in eq 7. Therefore, (rmrm\t) may 
tentatively be taken as the average of various (rr\t) terms 
except the few leading terms which usually include the 
atomic orbitals on the nearest-neighbor atom to a point 
charge. From the orthogonality of the molecular orbitals <pP 
and (Pj0, the second term of eq 7 vanishes, and eq 7 can be 
rewritten as 

E (QPQP)H') = E ' (Qr°Qr°)\{rr\t) - (rmrm\,)\ + 
r r 

nonnear 

E (QPQr°){(rr\t) - (rmrm\t)\ (8) 
r 

where Ernear indicates the summation of atomic orbitals on 
the nearest-neighbor atom to a point charge and ,̂nonnear 
the summation of other atomic orbitals. Considering that 
(rmrm\t) is the average value of the nonnearest neighbor 
terms and that the integral (/rjf), except for the nearest-
neighbor terms, changes its value gradually with the change 
of the distance between r and t as is shown schematically in 
Figure 2, we can reasonably neglect the second term of eq 
8. Therefore, the mixing coefficient given by eq 5 can be re­
written as follows 

near 
dij = -Z E Qr0Qr0IH') - (rmrm\t)\/(ti° - fJ°) (9) 

r 

When the substrate is a x electron system, E,n e a r in eq 9 is 
the summation of the single •K atomic orbital on the nearest-
neighbor atom to a point charge, leaving only one term 

dtj = -ZQr0QPlHt) - {rmrm\t)\i(tP - e/) (10) 

From eq 10 can be derived the following general rule of 
static orbital mixing.21 

Case 1: (a) When perturbation is due to a positive 
charge, the sign of the orbital mixing can be determined by 
the energy-level difference between the two molecular or­
bitals concerned and by the sign of the product of two coef­
ficients of the leading term (C/r°Q,°), where the atomic or­
bital r is the nearest neighbor of the point charge con­
cerned. That is, when the sign of the product is positive, a 
positive contribution is expected from the higher energy 
level («/ > e,0) and a negative contribution from the lower 
energy level («/> < «,°). When the sign of the product is 
negative, a positive contribution is expected from the lower 
energy level (e,0 < «,°) and a negative contribution from 

) ) *3 

I / (Catalyst) 
Vi V2 ' 

by catalyst electro- through overlap 
static field 

(a) (b) 

Figure 1. Schematic representations of (a) static and (b) dynamic or­
bital mixings of substrate molecular orbitals ipz into <p\. 

0 I ' i I I I I I I I I i i I I 

0 2 1 6 8 10 12 H 
Distance (A) 

Figure 2. Dependence of (rr\t) on the distance between a point charge 
at / and the atomic orbital r. The (rr\t) in this figure is for carbon 2s-
carbon 2s. The magnitudes of \(rr\t) — (rmrm\t)\ for an arbitrary set of 
atomic orbitals r,(/ = 1-5) are also given for illustration. In this figure, 
(rr\t), etc., are replaced by (rr\tt), etc., two-center Coulomb repulsion 
integral, according to the approximation used in the CNDO/2 method. 

the higher energy level (e / > e,0). (b) The magnitude of 
the orbital mixing should be approximately proportional to 
the absolute value of the product of the two coefficients, 
Cir°Cjr°, and inversely proportional to the absolute value of 
the difference of the two energy levels, | tj° — e,°|. 

Case 2: When perturbation is due to a negative charge, 
the reverse of (a) in Case 1 is true for the sign of the orbital 
mixing, and the same conclusion as (b) in Case 1 is valid for 
the magnitude of the orbital mixing. 

This general rule can be easily extended to a a electron 
system. That is, as is apparent from eq 9, Qr

0Cjr
0 in the 

rule may be substituted by E r C 0 Q r 0 for extension to a a 
electron system, since several atomic orbitals on the atom 
nearest to the point charge have nonzero coefficients. More­
over, when there are many point charges around the sub­
strate, the coefficient of the orbital mixing, d^, can be given 
by the summation on point charges, t, in question, giving 

near 

dij - - E Zt E QPQPlH') - (rmrm\t))/UP - */>) (11) 
t r 

From eq 11 can be derived a general rule similar to that de­
rived from eq 10. 

Application of the General Rule of "Static Orbital Mixing" 
to Lewis Acid Catalysis in Diels-Alder Reaction 

To illustrate the usefulness of the general rule of static 
orbital mixing of a catalyst given in the preceding section, 
we studied the catalytic action of Lewis acid in the Diels-
Alder reaction. The molecular orbital approach to this 
problem has already been made by Houk and Strozier, il­
lustrating the change in regioselectivity by Lewis acid.22 

Comparing the frontier orbitals of acrolein with those of 
protonated acrolein, considered to be a simple model for a 
Lewis acid coordinated dienophile, they found that the 
change in frontier orbitals by protonation indicates an in-
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Table I. Prediction of the Signs and Magnitudes of Orbital 
Mixings from the General Rule 

Figure 3. Orbital energies and coefficients of four ir orbitals for proton­
ated acrolein (left) and acrolein (right), obtained by CNDO/2 calcula­
tion. 

crease in regioselectivity, which is in agreement with experi­
mental results. Although their treatment is attractive, they 
did not give any explanation for the change in the frontier 
orbitals. Moreover, Fujimoto and Hoffmann also calculated 
the same system and decomposed the molecular orbitals of 
protonated acrolein into those of isolated acrolein in order 
to see the orbital mixing.10 We have attempted to find the 
theoretical basis for the change in frontier orbitals through 
our theory of orbital mixing. The Diels-Alder reaction is 
most suitable for application of our general rule of static or­
bital mixing since dynamic orbital mixing vanishes com­
pletely, because of the zero overlap between the proton Is 
orbital and acrolein w orbitals, and since regioselectivity is 
related only to the change in the frontier orbital and not to 
the change in the energy levels concerned. 

Figure 3 shows the four ir orbitals of protonated acrolein 
in comparison with those of acrolein calculated by the 
CNDO/2 method.18"20 From these figures, it is clear that 
the magnitudes of the coefficients in HOMO and LUMO 
orbitals change remarkably upon protonation, especially the 
relative magnitudes of Ci\ and C22 in LUMO, which is 
intimately related to the change of regioselectivity by Lewis 
acid catalysis as shown by Houk and Strozier.22 

According to our general rule of static orbital mixing, the 
change in the coefficient of a molecular orbital upon pro­
tonation should be represented by the mixing of the molecu­
lar orbital with the other molecular orbitals of the substrate 
itself. The signs of the mixing and the relative magnitudes, 
determined from this general rule, are summarized in Table 
I. The table is easily arranged from the molecular orbital of 
acrolein. For instance, the contribution of the fourth orbital 
to the third orbital is positive since the product of the coeffi­
cients of the third and fourth orbitals on the oxygen atom is 
negative and since the fourth level is lower than third level, 
and the magnitude of this contribution is very large since 
the product of the two coefficients is large and the energy 
level difference between the third and fourth levels is very 
small. Table I can be filled out by the same logic. 

To investigate the validity of the predictions given in 
Table I, we decomposed the molecular orbitals of proton­
ated acrolein into the contributions of those of acrolein in 
the same manner as that employed in our analysis of the ro­
tational strength.23"25 In other words, the molecular orbit­
als of protonated acrolein were represented as the linear 
combinations of the molecular orbitals of acrolein. The 
coefficients of the molecular orbitals of acrolein thus ob­
tained are listed in Table II. The signs of the coefficients in 
Tables I and II were in complete agreement, without excep­
tion. Moreover, the relative magnitude of Table I correctly 

Orbital 
concerned 

(protonated 
acrolein) 

1 
2 
3 
4 

Contributions ( 

1 

- L 
- S 
+S 

2 

+L 

+1 
- S 

sf other orbitals (acrolein)". * 

3 4 

+S - S 
- I +S 

+VL 
- V L 

a+, - indicate the signs of orbital mixing. 6VL, L, I, and S in­
dicate the very large, large, intermediate, and small magnitudes of 
orbital mixing. 

Table H. Coefficients of Molecular Orbitals of Acrolein in the 
Expansion of Molecular Orbitals of Protonated Acrolein 

Orbital of 
protonated 

acrolein 

1 
2 
3 
4 

1 

0.951 
-0.287 
-0.067 

0.092 

Contributions of orbitals of acre 

2 

0.305 
0.922 
0.206 

-0.118 

3 

0.020 
-0 .253 

0.906 
-0.339 

ilein 

4 

-0 .048 
0.054 
0.363 
0.929 

predicts the values in Table II. Therefore, it should be con­
cluded that the change in the molecular orbitals by the cat­
alyst attack can be correctly predicted, without calculation, 
from the molecular orbitals of the isolated substrate 
through application of our general rule of static orbital mix­
ing. For example, the great decrease in the absolute value of 
the C2 coefficient upon protonation in LUMO can be rea­
sonably explained by the large negative contributions of the 
first and third orbitals to LUMO, as is shown in Table I, 
since the Cj coefficients of these orbitals also have large 
negative values. Other changes in the molecular orbitals 
upon protonation can also be explained from Table I with­
out any calculation. 

Formulas for Dynamic Orbital Mixing 
When the molecular orbitals of a substrate overlap with 

those of a catalyst, the otherwise orthogonal molecular or­
bitals of the substrate can intermingle with each other 
through overlap with the molecular orbital of the catalyst. 
The coefficients of the orbital mixing of the substrate con­
cerned can be derived as the second-order term of the wave 
function by using the usual perturbation theory. This term 
has already been derived by many researchers through ne­
glect of the overlap integrals,17 but recently, Libit and 
Hoffmann11 derived this term through inclusion of the over­
lap integral by using the perturbation procedure developed 
by Imamura.12 Therefore, only the obtained results will be 
given in the following discussion. 

Consider three molecular orbitals, ipi and (& for the sub­
strate and ipi for the catalyst; (p\ and (pi are assumed to be 
orthogonal to each other, while #3 has a nonzero overlap in­
tegral with (pi and tpj. <pi and <p2 can intermingle with each 
other through the overlap integrals between <p\ and <# as 
well as those between <?2 and #5, resulting in an alteration in 
the shape of the molecular orbitals. 

The alteration can be described by the usual perturbation 
method. Consequently, the perturbed molecular orbital can 
be expanded as 

W ' = rf,l^0 + ^12^° + ^ 1 3 ^ 0 (12) 

where <pi°, <p2°, and ^3° are the molecular orbitals of the zer-
oth order, and their coefficients, dn, d\2, and rfn, are given 
by 

du- l - / 3 , 3 2 / 2 ( ^ 0 - e i 0 ) 2 + . . - (13) 
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rfl2=/3l3/323/(«20-«l0)(«3°-«l0) + . . . (14) 

^13 ^13/(€3° ~ «1°) + - - • (15) 

where e,-° is the orbital energy of the /th molecular orbital 
of the zeroth order, <pP. and &ij is the core resonance inte­
gral between molecular orbitals <#° and <pj°. Of these equa­
tions, eq 15 represents the mixing of & into ip\ by direct in­
teraction through /3i3. while the mixing of <& into <p\ is rep­
resented by eq 14, indicating that the mixing of the molecu­
lar orbitals is brought about indirectly through /313 and fe. 
It is the value of d\2 given by eq 14 that is responsible for 
the change in the shape of the molecular orbital by the cat­
alyst through dynamic orbital mixing. 

Thus, the following general rule of dynamic orbital mix­
ing can be derived from eq 14 according to the relative 
heights of energy levels of interacting molecular orbitals. 

Case 1: (a) When the energy level of a molecular orbital, 
<p\, of a substrate is located between those of two molecular 
orbitals, ^ and ^ , of the substrate and the catalyst, and 
when the sign of the overlap integral between <p\ and ^3 is 
the same as that of ipi and <p$, a negative contribution of ip2 
to ifi\ is expected. Likewise, a positive contribution is expect­
ed when the signs of the overlap integrals differ. 

(b) The magnitude of the mixing of the molecular orbital 
ifrx should be proportional to the absolute value of the prod­
uct of the two overlap integrals and inversely proportional 
to the absolute value of the product of the two energy dif­
ferences between «2° and ei0 and between «3° and «i°. 

Case 2: (a) When the energy level of <p\ is higher or lower 
than both energy levels of ^ and <p3, the reverse of (a) in 
Case 1 is true. That is, a positive contribution of tpi to <p\ is 
expected when the sign of the overlap integrals between <p\ 
and <pi is the same as that of <p2 and Cp3, while a negative 
contribution is expected when the signs differ. 

(b) The magnitude of the orbital mixing is the same as 
(b) in Case 1. 

Thus, according to the general rule derived above, the 
sign and the magnitude of orbital mixing can easily be esti­
mated from the shapes of the molecular orbitals and rela­
tive energy levels in question. It should be noted that these 
energy levels concerned are not those of the isolated mole­
cules, but those of the electrostatically interacting mole­
cules with no overlap integrals, as will be shown in the fol­
lowing section. Extension of the formulas with more than 
three energy levels for dynamic orbital mixing is straight­
forward and the same as that given by Libit and Hoff­
mann." Therefore, the extended formulas will not be given 
here, but we should add the notation of the summation in eq 
13-15. 

Application of the General Rule of "Dynamic Orbital 
Mixing" to the Meerwein-Ponndorf Reaction 

In order to ascertain the usefulness of the general rule of 
dynamic orbital mixing, we applied our formulas to the 
Meerwein-Ponndorf reaction. As is well known, in this 
reaction aldehydes and ketones are reduced to alcohols by 
the catalysis of aluminum isopropoxide. The transition state 
of this reaction is usually considered to form a cyclic com­
plex by the coordination of the carbonyl oxygen with alumi­
num, followed by the transfer of the hydride ion, as is 
shown in Figure A.16-21 Therefore, we calculated by CNDO 
method18-20 the molecular orbitals of isolated formaldehyde 
as well as those of formaldehyde coordinated to aluminum 
alkoxide in order to investigate the change in the frontier 
orbital of formaldehyde upon coordination to the catalyst. 
Because of the limited memory size of our computer, dime-
thoxymonoisopropoxyaluminum was used as the model 
compound for the catalyst in our Meerwein-Ponndorf reac­
tion; the geometry is given in Table III. 

I 
H H-C-CH3 

\ — - A l [ O C H ( C H 3 ) 2 ] 2 

Figure 4. Transition state of the Meerwein-Ponndorf reaction.26 

H. . H H C H J ^ C H 3 

I I l 
0 ^ A ^ ° 

Y ! 

-̂x V^H 

I 
H 

Figure 5. Relative conformation of formaldehyde-aluminum alkoxide 
complex, used as a model for the analysis of the catalytic effect of Al-
alkoxide coordination. Each of the three alkoxy carbons is assumed to 
be trans with the carbonyl oxygen. The oxygen, carbon, and one methyl 
hydrogen of one of the methoxy groups are coplanar with the Al atom 
and the formaldehyde molecular plane. In addition, the Al atom is co-
planar with the oxygen, methine carbon, and methine hydrogen of the 
isopropoxy group. 

Table III. The Geometry of Formaldehyde-Aluminum Alkoxide 
Complex Used in the Calculation" 

Aluminum Alkoxide6 

Bond length, (A) 

Al-O 0 - C C-C C-H 

1.6176 L45 L54 L09 

Formaldehyde 
Bond length, A Bond angle, deg 

C-H C = O ^HCH ^HCO 
1.12 1.21 118 121 

"The distance between the carbonyl oxygen and the aluminum 
atom was assumed to be 2.0 A and the bond angle, dCOAl, 120°. 
*AU the bond angles in the molecules are assumed to be 109°28'. 

The relative conformation of the substrate and the cata­
lyst is shown in Figure 5, together with the directions of the 
x, y, and z axes. As shown in Figure 5, the isopropoxy 
group was tentatively assumed to be located farthest from 
the carbonyl group, although the true geometry of the tran­
sition state for the Meerwein-Ponndorf reaction is not yet 
disclosed. Because of the large distance between the carbon­
yl group and the methine hydrogen of the isopropoxy group 
in this geometry, only the effect of the coordination to the 
aluminum atom on the frontier orbitals of the carbonyl 
compound will be included, and the effect of the interaction 
between the ir* orbital of the carbonyl group and the meth­
ine hydrogen, eventually transferred as a hydride ion in the 
transition state, of the isopropoxy group will be excluded. In 
other words, in the present model for calculation, we can in­
vestigate only the catalytic action of aluminum alkoxide by 
dropping the interaction between the reagent (the methine 
hydrogen of the isopropoxy group) and the substrate. In the 
transition state, however, the isopropoxy group may rotate 
around the O-Al bond, as shown in Figure 5, so that the 
methine hydrogen may come close on top of the carbonyl 
carbon of the substrate. Although the true steric course in 
the transition state might be different from that assumed in 
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Table IV. Coefficients of the Atomic Orbitals of Al and Carbonyl n Group in Isolated and Coordinated States 

Energy 
level, eV 

C 2 P z 

0 2p2 

Al 3s 
A13px 

Al 3py 
A13pz 

Al 3d2
J 

Al3d x z 

Al 3dyz 

Al 3dx_y 

Al 3dxy 

Carbonyl 

-18.57 

0.6447 
0.7644 

Isolated 

Carbonyl 

4.20 

-0.7644 
0.6447 

Al-ia 

3.91 

-0.0062 
0.3555 
0.0017 

-0.6157 
-0.0636 

0.1231 
0.4850 
0.0319 

-0.2800 

Al-2« 

3.95 

0.0000 
-0.6255 

0.0000 
-0.3611 

0.1114 
0.0743 
0.2791 

-0 .0643 
0.4834 

Coordinated 
with 

overlap 

1.21 

-0.7977 
0.5662 
0.0002 

-0 .0001 
0.0000 
0.1180 
0.0003 

-0.0537 
-0 .1413 

0.0003 
0.0004 

Carbonyl 

-18.95 

0.6400 
0.7684 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Coordinated without overlap6 

Carbonyl 

3.84 

-0.7684 
0.6400 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Al-I 

4.17 

0.0 
0.0 
0.0065 

-0.3417 
-0.0019 

0.6226 
0.0607 

-0.1223 
-0.4903 
-0.0309 

0.2691 

A1-2 

4.22 

0.0 
0.0 

-0.0001 
0.6332 
0.0008 
0.3479 

-0.1116 
-0.0702 
-0.2685 

0.0659 
-0.4887 

"Two molecular orbitals of isolated aluminum alkoxide which have larger aluminum atomic orbital coefficients are conventionally de­
signated as Al-I and Al-2. bCalculated for the electrostatically interacting system without overlap integral between formaldehyde and 
aluminum alkoxide. 

Table V. Charge Distributions of Isolated Aluminum Alkoxide 
and Formaldehyde 

if 
H2JJi4 

H ; 

Hs 

/ 

Aluminum Alkoxide 
O1 C2 H3 H4 H5 

-0 .324 0.114 -0 .002 -0 .018 0.016 
H8 C9 H10 H11 H12 

-0 .022 -0 .040 0.017 0.008 0.012 

Al 
0.605 

0.198 

O6 

-0.346 

O 
-0.187 

Formaldehyde 
C H 

0.222 -0.018 
H 

-0.018 

this article, the essential feature of the change in the fron­
tier orbital under the coordination catalyst should properly 
be revealed by our model described here. 

The occupied and unoccupied x molecular orbitals of the 
carbonyl group in formaldehydes in isolated state and in the 
state coordinated to aluminum alkoxide are tabulated in 
Table IV, together with the coefficients of the aluminum 3s, 
3p, and 3d atomic orbitals of the isolated and coordinated 
aluminum alkoxides. It is clear from this table that the 
coefficient of the carbon x orbital in the unoccupied level of 
the coordinated formaldehyde is larger than that of isolated 
formaldehyde. Consequently, this result indicates that alu­
minum alkoxide increases the reactivity of the carbonyl car­
bon of formaldehyde toward the hydride ion, which is in 
agreement with the experimental results. 

Why, then, does the interaction between formaldehyde 
and aluminum alkoxide increase the reactivity of formalde­
hyde? First, the effect of static orbital mixing, that is, the 
effect of electrostatic interaction between the catalyst and 
the substrate, was investigated by dropping all the overlap 
integrals between the aluminum alkoxide and formaldehyde 
and by comparing the thus obtained x molecular orbitals of 
the electrostatically interacting formaldehyde with those of 
isolated formaldehyde. The calculated x molecular orbitals 
for the electrostatically interacting formaldehyde are also 
listed in Table IV. It is obvious that the effect of static or­
bital mixing is very small, judging from the small difference 
between molecular orbitals of isolated and electrostatically 

interacting formaldehydes. Therefore, dynamic orbital mix­
ing should be responsible for the increase in the frontier 
electron density on the carbon atom by the interaction be­
tween the catalyst and the substrate. 

Second, orbital mixing between the two x molecular or­
bitals of the carbonyl group was analyzed by using the for­
mulas for dynamic orbital mixing. Obviously, the overlap 
integrals between aluminum atomic orbitals and carbonyl x 
orbitals should play an important role in orbital mixing. 
Therefore, among the many molecular orbitals of isolated 
aluminum alkoxide, two molecular orbitals with relatively 
large coefficients of aluminum atomic orbitals are picked 
up and listed in Table IV, together with their orbital ener­
gies. The two x molecular orbitals of the carbonyl group of 
isolated formaldehyde are also tabulated in Table IV. The 
numerators of eq 14 and 15 can be calculated in a straight­
forward manner by using the molecular orbitals and the 
core resonance integrals concerned. As for the denomina­
tors of eq 14 and 15, it should be noted that the electrostatic 
interaction between the catalyst and the substrate may 
change the relative heights of the orbital energies in ques­
tion when the molecules are polar, as in this present case. 
That is, from Table IV, the energy of the unoccupied x or­
bital of the carbonyl group is 4.20 eV in the isolated state, 
but 3.84 eV in the electrostatically interacting state without 
overlap, while that of aluminum alkoxide is 3.91 eV in the 
isolated state and 4.17 eV in the interacting state due to the 
positive charge on the aluminum atom and the negative 
charge on the oxygen atom of the carbonyl group, as is 
shown in Table V. Therefore, in the isolated state, the ener­
gy level of the carbonyl x orbital is higher than that of alu­
minum alkoxide, while the reverse is true in the interacting 
state. Obviously, the latter must be used in the denomina­
tors of eq 14 and 15. The relative heights of energy levels 
concerned are shown in Figure 6. 

The values of orbital mixing derived by using eq 14 and 
15 are given in Table VI. From these results, two molecular 
orbitals of aluminum alkoxide can reasonably be expected 
to give negative contributions to result in an increase in the 
frontier electron density on the carbonyl carbon atom and a 
decrease on the carbonyl oxygen atom, in complete agree­
ment with the numerical results in Table IV. 

In order to confirm this conclusion, the molecular orbital 
of the formaldehyde-aluminum alkoxide complex was de­
composed into those of isolated formaldehyde and isolated 
aluminum alkoxide in a manner similar to that employed 
for the analysis of static orbital mixing given above. In 
Table VII is listed the expansion coefficient of molecular 
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Table VI. The Coefficient of Orbital Mixing 

rf13(eql5) d12(eq!4) 

-0.299 

aAl-l and Al-2 represent the molecular orbitals of aluminum 
alkoxide listed in Table IV with the orbital energies of 3.91 and 
3.95 eV, respectively. 

Table VII. Coefficients of Molecular Orbitals of Aluminum 
Alkoxide and Formaldehyde in the Expansion of Molecular 
Orbitals of Aluminum Alkoxide-Formaldehyde Complex 

Contributions of isolated molecular orbitals 

Carbonyl n Carbonyl n* Al-lfc Al-2* 

Carbonyl n* MO -0.0814 0.9748 -0.1725 -0.0991 
Carbonyl rt* MC^ -0.0061 0.9999s 

aThe molecular orbitals of the complex interact only electro­
statically. 6The same notation used in Table IV. 

orbitals of the isolated system for the carbonyl ir orbital of 
the complex, together with those obtained by dropping all 
the overlap integrals between the catalyst and the substrate. 
As Table VII shows, static orbital mixing is found to be 
negligibly small, which is in agreement with the results 
mentioned above. On the other hand, the mixing coeffi­
cients due to dynamic orbital mixing are very large in mag­
nitude for both the Al-I and Al-2 levels of aluminum alkox­
ide, the former being about twice as large as the latter, in 
harmony with the values of d\i in Table VI. Furthermore, 
the orbital mixing of carbonyl v molecular orbital into car­
bonyl x* molecular orbital in Table VII has an order of 
magnitude similar to that of the sum of d\2 in Table VI, 
since the orbital mixing of carbonyl ir orbital should be the 
sum of the contributions through the Al-I and Al-2 levels. 
It should be pointed out that the signs of the orbital mixing 
are also in complete agreement with each other. Therefore, 
the increase in chemical reactivity by the catalyst in the 
Meerwein-Ponndorf reaction was found to be the result of 
the dynamic orbital mixing of the occupied carbonyl ir mo­
lecular orbital with the unoccupied carbonyl TT* molecular 
orbital by way of the molecular orbitals of the aluminum 
alkoxide catalyst, as is shown in Figure 6. 

Further Development of the Theory of Orbital Mixing 

In the preceding sections, we derived the formulas and 
general rules for static and dynamic orbital mixings and ap­
plied them to the Diels-Alder and Meerwein-Ponndorf 
reactions with remarkable success. The most useful aspect 
of the general rules is that the change in molecular orbitals 
by the attack of a catalyst can easily be predicted from the 
molecular orbitals of the isolated substrate and the position 
of the attack. Molecular orbital drawings of representative 
substrates are now readily accessible in a recently published 
book.28 Combination of an orbital drawing with our general 
rules for orbital mixing can give the prediction of the 
change in a frontier orbital concerned without molecular or­
bital calculations. It is needless to say that these general 
rules for static and dynamic orbital mixings can be applied 
not only to catalytic reactions but also to other fields in 
which orbital mixing plays an important role. 

The general rules are to be considered valid only qualita­
tively and not quantitatively, since the formulas by the per­
turbation method are obtained by neglecting the changes in 
the electron-electron repulsion terms in the usual SCF pro­
cedure, i.e., by uncoupled approximation. As shown in the 
application of dynamic orbital mixing to the Meerwein-

.* U. 20 4.22 
c=0 "-•-. _ L ° / ^e-TTTT" >,. 3.95 Al-2 

/ 3.91 Al-I 

Isolated Coordinated Coordinated Isolated 
(no overlap) (no overlap) 

Formaldehyde Al-alkoxide 

Figure 6. Schematic representation of dynamic orbital mixing (solid 
lines) in the Meerwein-Ponndorf reaction and of the change of the en­
ergy levels on coordination (with no overlap). The numbers are the en­
ergy levels of the molecular orbitals in eV. 

Ponndorf reaction, the change in the relative heights of en­
ergy levels of a substrate and a catalyst may have a serious 
effect on the results. In order to develop a more quantitative 
approach, the change in the relative heights of energy levels 
concerned should be taken into explicit account. However, 
there is a relatively simple method to see whether or not the 
relative heights of the energy levels of a substrate and a cat­
alyst do reverse. That is, the energy levels of the molecular 
orbitals go down when they interact with positive charges 
but go up with negative charges. On the other hand, the rel­
ative heights of energy levels of a substrate and a reagent 
can reasonably be expected to be not as serious as that of a 
substrate and a catalyst, since the electrostatic field due to a 
catalyst influences both the energy levels of a substrate and 
a reagent. The strength of the electrostatic field on a sub­
strate might be different from that on a reagent due to the 
difference in the relative distance between the catalyst and 
the substrate, and between the catalyst and the reagent. 
However, this difference is probably not very important for 
the qualitative approach developed here. Moreover, it 
should be pointed out that we consider only the change in a 
frontier orbital and neglect the contribution of other orbit­
als to the change in chemical reactivity. This approximation 
can be rationalized from the fact that the change in chemi­
cal reactivity by a catalyst is brought about predominantly 
by the change in the frontier orbital, judging from the defi­
nition of superdelocalizability by Fukui et al.4 '5 In order to 
obtain the quantitative measure for catalytic activity, we 
need to formulate the interaction energy between a reagent 
and a substrate under the influence of a catalyst including a 
change in electron-electron repulsion terms, as we are so 
doing at this time. 

Finally, the meaning of multicenter interactions between 
a substrate and a catalyst may be derived from these gener­
al rules of orbital mixing. In other words, whether multicen­
ter interactions strengthen or weaken orbital mixing, i.e., 
increase or decrease in chemical reactivity, can be predicted 
from the sign of molecular orbitals. For example, in static 
orbital mixing, a simultaneous interaction with two point 
charges (four-center interaction) gives the following coeffi­
cient of orbital mixing from eq 11 

dtJ = -Z 1 1 C 1
0 C^ 0 Kr 1 / - , ! / , ) - (w„, | r , ) ) / ( f / ° - fJ°) -

Zl2Cir2
0CJn

0{(r2r2\t2) - (/Wm |/2)|/(«,° - tJ°) (16) 

where ?i and t2 are designated as two point charges inter­
acting with a substrate, and the neighbor term nearest to t\ 
and t2 is assumed to contain only one term, r, and r2, re-

lmamura, Hirano / Catalytic Activity in Terms of Molecular Orbital Mixing 



4198 

spectively, for the sake of simplicity. From eq 16, it can be 
predicted that when Zt]Cjr]°Cjr^

0 has the same sign as that 
of Z12Cin

0Cjn
0, the absolute value of dy increases in mag­

nitude by the four-center interaction, in comparison with 
that by a two-center interaction, to lead to a larger change 
in chemical reactivity. On the other hand, when two terms 
have different signs, the reverse is true to lead to a smaller 
change in chemical reactivity. Similar features are expected 
for multicenter interactions for dynamic orbital mixing as 
well as combinations of static and dynamic orbital mixings. 
Consequently, catalytic activity for multicenter interactions 
should depend upon the symmetry of molecular orbitals, 
which is in harmony with the Woodward-Hoffmann rule6-8 

of chemical reactivity already proven to be very useful for 
the prediction of catalytic activities.13 However, it should 
be worthwhile to note that our general rules can also be ap­
plied to the system lacking molecular symmetry. This con­
clusion has led us to the probability that catalytic action of 
enzymatic reaction can be illustrated by orbital mixings 
from signs of molecular orbitals concerned, since multicen­
ter interactions are usually found in many enzymatic reac­
tions. Studies on applications of orbital mixing to enzymatic 
reactions are now in progress and will be reported in the 
near future. 
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across an allyl framework, e.g., a nonpolar sigmatropic 
shift. 

In our laboratories we have been interested in the effect 
of substituents upon the rates, stereoselectivity, and regiose-
lectivity of pericyclic reactions. Thus, it became of interest 
to study the effect of substituents upon "subjacent orbital 
control" in 1,3 sigmatropic shifts, the reactions examined 
by Berson and Salem in their original publication. In this 
work we provide a general theoretical argument supported 
by Mulliken-Wolfberg-Helmholtz (MWH) empirical,4 

SCF-INDO semiempirical,5 and ab initio (STO-4G basis 
set)6 calculations which show that "subjacent orbital con-
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Abstract: One electron MO theory indicates that subjacent orbital control is important in nonpolar 1,3 sigmatropic shifts but 
not in highly polar 1,3 shifts. This conclusion is supported by Mulliken-Wolfsberg-Helmholz, SCF-MO-INDO, and ab ini­
tio (STO-4G) calculations. 
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